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Liquid crystal director fluctuations and surface anchoring by molecular simulation
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We propose a simple and reliable method to measure the liquid crystal surface anchoring strength by
molecular simulation. The method is based on the measurement of the long-range fluctuation modes of the
director in confined geometry. As an example, molecular simulations of a liquid crystal in slab geometry
between parallel walls with homeotropic anchoring have been carried out using the Monte Carlo technique. By
studying different slab thicknesses, we are able to calculate separately the position of the elastic boundary
condition and the extrapolation length.

PACS numbgs): 61.30.Cz, 61.20.Ja, 07.05.Tp, 68.45.

[. INTRODUCTION In this paper, we propose a technique to measure the sur-
face anchoring strengthV by computer simulation. The

Liquid crystal anchoring effects have been intensivelymethod itself is based on the study of theector fluctua-
studied both experimentally and theoretically during recentionsin the liquid crystal cell. A similar approach has already
decadeq1,2]. Such an interest is easily understood sincebeen used for thexperimentakharacterization of the inter-
most liquid crystal devices are cells comprising orientingface [19] and is based on measuring the light scattering
surfaces with a liquid crystal between. Typically, aligning caused by the director fluctuations. In computer simulation,
surfaces provide a uniform orientation of the liquid crystalthe director fluctuations can be studied directly, using en-
director in the cell interior. semble averages of functions of the second-rank order tensor

On the phenomenological level, liquid crystal anchoringcomponents. A fit to the fluctuation amplitudes with equa-
can be described by two basic parameters: the easy axis dions predicted by elastic theory then allows determination of
rectione and the anchoring coefficiet. These two param- the surface anchoring strength.
eters are critical design parameters for every liquid crystal
device [3]. A variety of experimentalmethods have been Il. THEORY
proposed to measure anchoring parameters, in particular the
anchoring coefficientV [4,5]. Most of them measure surface
director deviations in an external field and involve rather
complicated optical setups.

In spite of the practical importance, the mechanism of th
director alignment is still not well understood. Experimentalt
techniques always involve optical measurements. They ted
the entire liquid crystal cell and therefore cannot provide a
satisfactory description of the thin interface region. Theoret-

ical investigations of anchoring are also quite controversialwherth:%y(&n/m)z is a hydrodynamic term with an ef-
For example, the usual continuous phenomenological theorgiive viscosity coefficienty, F, is the Frank elastic free
has divergent surface terms in the elastic free energy eXPaRnergy, and-, is the surface anchoring energy

. 1 S .
sion[6,7]. In what follows we use the one-elastic-constant approxi-

One of the approaches for the systematic investigation Olfnation, i.e.Ky,=K,,=Ka=K. Then the Frank free energy
anchoring phenomena is computer simulation of liquid CrYS<an be brought into the form
tals in confined geometries. Indeed, computer simulation is a
well established method to treat bulk elastic coefficients 1
[8,9], the surface anchoring strendthO], and structures of Fb:EKJ [(V-n)?+(V Xn)?]dr.
disclination core$11,12. This means that computer simula- v
tion allows investigation of details of the liquid crystalline

structure that cannot be resolved experimentally.

Large length- and time-scale fluctuations of the director
n(r) can be described in the continuum model of liquid crys-
tals, based on the phenomenological elastic constants. In this
eapproach, the hydrodynamic equations for the director and
he boundary conditions can be obtained by minimization of
pe cell free energy20]:

F:Fh+Fb+Fsv (1)

The liquid crystal cell is bounded by surfaces-0,L

Several papers have already been published on the searM?'Ch prpwde some k”.‘d of anqhorlng co_nd|t|{)11]. Below

for reasonable surface potentials to use in simulat[d3s- we conS|derhomeotropmanchormg, that 1S, normal to the
surface.Planar anchoring can be treated in the same way.

18]. However, most of them do not characterize aligning . . . .
surfaces using well established parameters. Questions abo\me assume that the interaction of the director with the cell

the formation of a solid interface layer and values of the eas?urfaces has the Rapini-Papoular for2i]
axis angle and anchoring coefficient are still open. The rea- 1

son for this is probably a lack of reliable methods to measure Fe=— _Wf (n- eOYL)Zer ,
these parameters by computer simulation. 2 Jsps
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where the unit vectorsy, define the directions of the easy 7= yIK(0? +q2). (10)
axes az=0L: eg=¢,, e = —¢,; Wis the anchoring energy,
andr, =(x,y). Substituting expansioli6) into the free energy5) and

Equations for the director and boundary conditions can bgerforming the integration over the cell volume we obtain
obtained by minimization of the cell free energy E#). In

the case of homeotropic anchoring on both surfaces the sta- K Q2(2&+ Y2+ £2)
tionary director distribution in the cell is homeotropic, i.e., 5Fb=v —
no=¢e,. Therefore, we have to investigate small perturba- ag;  (ix+é)

tions of the director around the distribution: x 5n(+)(ql q,)- 5n(+)(—0h a,)-

n(r)=no+n(r). @ Integrating, we took into account the orthogonality of the

Minimizing the total free energgl) and linearizing the equa- €igenfunctions in the expansid) with different eigenvec-
tions for the director and boundary conditions with respect tdorsd, which allowed us to reduce the summations ayey

on, we obtain the equations to a single sum oveq. _
Application of the equipartition theorem of classical sta-
d ) tistical mechanics, just as for elastic fluctuations in bulk lig-

Yo on=KV=dn uid crystals[22], gives the fluctuation amplitudes
and boundary conditions keTV(ix+ &)?
(on)(q, ,q,)- nH(=q, ,0,)) =~ — N
d 2Kg(2&+ x"+ &)
Wén=K o on =0 (4)
z=L,0 where(- - -) denotes an ensemble average.

In molecular simulations, rather than measuring director
fluctuations, it is more convenient to measure fluctuations of
e[he second-rank order tensor compondfifiowing Forster
[22]). We define the real-space order tensor density

for the fluctuations. Taking into account E®), the expres-
sion for the free energy fluctuations can be rewritten in th
form of the average of the self-conjugdtéermitian opera-
tor —3KV2:

v A
5Fb=—%KL an(r)-v2sn(r)dr. (5) Qua(r =13 2 r=r)Qup,

The eigenfunctions of the operater:KV?, which satisfy i 3

boundary conditiong4), form a complete set of orthogonal Qaﬁzi( UiaUip™ §5a3)’

functions characterized by wave vectpr Therefore,on(r)

can be expanded in a series of these orthogonal functions:wherea, B=x,y,z, in terms of the orientation vectors of
each moleculé (we consider only uniaxial moleculedf we

-— eld i sntt)(q, ,q,) €' assume that there is no variation in tegreeof ordering,

Vg a, we may write

+6ont7)(q, ,q,) %], 6)

on(r)

3 1
=5 ->Q8
whereq, = (dy,q,) and Qup(r) =5 QNa(NNg(r) = 5Qdup

()_ ix—¢& +) whereQ is the order parameter, i.e., the largest eigenvalue of
n _iX—+§5” : () Q,p(r). If the directorn, is taken to lie along the axis
throughout the sample, the off-diagonal componég(r),
Here we have introduced the dimensionless wave vegtor a=X,y, are proportional to the fluctuations of the corre-

=q,L and anchoring parameter sponding director components:
WL L 3
:T:X’ (8) Qaz(r)ZEQana(r)'

where is the extrapolation lengtf20]. The wave vectors  Thjs is the situation for homeotropic anchoring at both sur-
g, form a discrete spectrum because of confinement irzthe faces. For planar anchoring, with the director alorand the
direction which depends on the anchoring enefgysee the  syrface normal along, the componentg,, ,Q,; are impor-
Appendix for details The explicit form of theq, spectrumis  tant (and nonequivaleit

given by the secular equation: Measurements are performed directly in reciprocal space.
The Fourier transform of the real-space order tensor is

(£2—x?)siny+2£&y cosy=0. 9
P . \% S
Each |nd|y|dual _mode can now pe seen from B3).to relax Qaﬁ(k):f Qaﬂ(r)euk.rdr:N E Quaﬁe.k.ri_
exponentially with a relaxation time given by v i
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Then the quctuationilQaB(k)F) can be easily measured L independently of parameteis and K by examining the
from simulations: characteristic wavelength of the fluctuation amplitude

(IQurlk)[?).

VZ ) 2
|Qaﬁ<k>|2=—2[(2 Q;,Bcosik-ro)
N i I1l. MOLECULAR MODEL AND SIMULATION METHODS

To test the technique proposed, we simulated a liquid
: 1D crystal confined between parallel walldab geometry with
finite homeotropic anchoring at the walls. The director fluc-
We explicitly relate simulation-measured fluctuation modeduations occur around the preferradhiform alignment per-
with theoretically predicted amplitudes of the director fluc- pendicular to the walls.
tuations forg, =0, We performed Monte CarlMC) simulation of the liquid
crystal system. We used a molecular model that has been

+

2
2 QLﬁsin(k-m)

3 N studied earlier in this geometfyl0]. The molecules in this

Quzlks) = EQqEZ 5nfl '(0.0,) study were modeled as hard ellipsoids of revolution of elon-
, ) gatione=a/b=15, wherea is the length of the semimajor

e —1 fiy—g|en-1 axis andb the length of the two equal semiminor axes. The

X K+ x ix+é k—x phase diagram and properties of this family of models are

well studied[23-27. It is useful to express the density as a
wherex=k,L. Note that theg, take discret¢but not equally  fraction of the close-packed density, of perfectly aligned
spacedl values as discussed earlier, while thevalues are  hard ellipsoids, assuming an affinely transformed face-
unrestricted. centered cubic or hexagonal close-packed lattice. In this

Sincedn(r) is real, using Eq(6) we have case, the isotropic-nematic phase transition occurs at quite a
. low density,p/p.,~0.2, and the simulations are performed
) o &ty S+ — at a state point corresponding pdp,~0.28, for which the
[ont(a, .0, 1" = (E+ix)? N0z nematic order parameter 9~0.85. For this model, tem-
perature is not a significant thermodynamic quantity, so it is
Taking this equation into account, and the fact that fluctuapossible to choosksT=1 throughout.
tions with different wave vectors are independent, i.e., The slab geometry is defined by two hard parallel confin-
(6n™)(q, ,q) on(—q, ,q.))=0 if gq,#q., the corre- ing walls, which cannot be penetrated by tentersof the

sponding ensemble average of the squared order parameglfipsoidal molecules. Packing considerations generate ho-

can be rewritten as meotropic ordering at the surface. Surface anchoring in this
system has been studied recenl@] for a system with wall
9 Q% X2+ &2 separationL ,=125%=_8.33, by applying an orienting per-
(1Quzlko)|?) = gks T > - turbation at one of the walls and observing the response at
% Qy(26+x "+ &%) the other. This yielded an estimate of the extrapolation
ei(K—X)_l‘z length A\~350~2.33. In the current work, simulations

ei(K+)()_1 (IX_g
X + | -
ix+é

‘ . were carried out for systems df=2000 particles with wall
separationd ,=6.58,8.222,9.86, which (from the above

(12 estimate of\) would correspond to surface anchoring pa-

_ _ rameters in the range 2&=<4.2.

We measureQ and (|Q,(k,)|?) from simulations, Eq. To be sure that we have the same state point for each
(11), anq th_en compare with the theoretical predictior_1 Edsimulation, we adjusted the density to have the sdpge
(12), which is parametrized by, X, andK. Both the permit-  component of the pressure tensor for all systems. Then a
tedq, spectrum and the variation ¢fQ,..(k,)|?) with k, are  sequence of runs was carried out using the conAfT-
sensitive to the anchoring strength paraméter./\. ensemble, allowing typically POMC sweeps for equilibra-
small g, values dominate because of tq§ in the denomi-

nator. Therefore, it is always possible to truncate this sum
and use only the first values of tltg spectrum. Then, for

largek, or for k>, Eq. (12) can be simplified so that the  The simulation results were analyzed to give a density

K+ X K—X

IV. SIMULATION RESULTS AND DISCUSSION

dependence oR, is explicit: profile and an order tensor profile which are shown in Figs. 1
o 5 5 and 2. From these profiles we can see that the walls are
o 9 _QV|sin(«/2) X sufficiently well separated, and the variation of the order
<|Qaz(kz)| >_ _kBT 2 2 2\ " H H H
2 K kl2 @ Q226+ X%+ &2 parameter across the slab is small, even in spite of the large

(13)  change in local density near the walls.
The order tensor fluctuations in reciprocal space were cal-
Hence, for largek,, the fluctuation amplitudé|Q,,(k,)|?) culated using expressiofll). To fit the simulation results
has a characteristic oscillation with the period given Ay with the elastic theory we have to remember that the size of
=k,L=2. This means that we can adjust the cell thicknesghe simulation boxX_, is not necessarily equal to the liquid
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FIG. 1. Density profiles as functions efcoordinate. Distances FIG. 3. Ratio of the director fluctuations as function of wave

are normalized by the molecular semiaxis lengtand the density  vector (normalized by the molecular semiaxis lengthfor differ-

is expressed relative to the closed-packed densifyfor perfectly  ent wall separations. Symbols: Monte Carlo results; solid lines:
aligned ellipsoids. The profiles are symmetrical; only one side ofelastic theory dashed lines: elastic theory without correction for the
the slab is shown. The results for different wall separations arelifference between the elastic-theory cell thicknessd the simu-

almost indistinguishable on this scale. lation box sizeL, .

crystal cell thickness appearing in the elastic theory. The fluctuations, which are sensitive to changeskinwhile the
former is a physical quantity, which, in statistical mechanics Shapes of the curves, and the characteristic oscillation wave-
is determined by the positions at which the liquid numberlengths, are sensitive to the choicelgf. These ratios with
density becomes identically zero. The latter appears in thb1=6.58,8.22a, L,=9.86a, and corresponding fitting
elastic theory: it is determined by the positions at which thecurves are plotted in Fig. 3. The best fits were obtained with
orientational elastic boundary conditions are applied. Physikw/a2=0.59. In this figure we also plot theoretical curves
cally, the difference may be ascribed to partial penetration ofvith L,,=0: the clear discrepancy with the simulation results
the walls by the liquid crystal molecules, formation of anindicates that the simulation box sitg is indeed signifi-
ordered(or solid) layer near the walls, or other molecular- cantly different from the actual cell thickness.

scale features. We assume that we may writel ,+2L,,,
where the valud,, (which may be positive or negativés
characteristic of the wall, independent bf, and may be
determined in our fitting process.

Following the determination of,,, we adjusted the ex-
trapolation length\ to obtain the best fit to the fluctuation
data: the fluctuation amplitudes with smkjl are most sen-
sitive to this quantity. Together with the corresponding fit-

The best estimate of the wall-induced separation distancéng curves for the different slab thicknesses, our results are

L, was obtained by examining the
<|Qaz(kzaL1)|2>/<|QaZ(kz1L2)|2> fOf different Ll,2 Since
they reveal more structure for largge. Plotting the results in

this way removes the overall scaling of the amplitudes of 15§
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FIG. 2. Profiles of nematic order parameg@for different wall

ratios plotted in Fig. 4. The best fits were obtained with a bulk
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oL /a=8.22
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FIG. 4. Director fluctuationgarbitrary unit$ as function of
wave vector(normalized by the molecular semi axis length for
different wall separations. Symbols: Monte Carlo results. Error es-
timates are indicated at some representative points; at higher wave
vectors the errors are smaller than the plotting symbols. Solid lines:

separations. Distances are normalized by the molecular semiaxidastic theory, fitted to parameters discussed in the text. Inset: fluc-
lengtha. The profiles are symmetrical; only one side of the slab istuations multiplied by k,a)? to emphasize structure at higher wave
shown. Note the highly expanded vertical scale. numbers. Successive curves are offset by 0.5 for clarity.



6692 DENIS ANDRIENKO, GUIDO GERMANO, AND MICHAEL P. ALLEN PRE 62

elastic constanKa/kgT~66 and an extrapolation length APPENDIX: FLUCTUATION SPECTRUM

)\_/a~2._3. The theoretical fitting curves agree well with the 14 optain the spectrum of thgg, modes of the fluctuations
simulation results, for small values &f, as one would ex- e need to select from the eigenfunctions of the operator
pect for a theory valid for long-wavelength fluctuations. At _ 1K V2 those that satisfy the boundary conditiads. Sub-
higherk,, the structurdemphasized in the inset of Fig. 4 by stituting Eq.(6) into the boundary condition&), we obtain

a multiplying factork%) is not perfectly reproduced, but the a set of linear equations

agreement is satisfactory. This is not surprising, since we

expect the elastic theory to become less accurate at higher (E+iy)eXon™+(g—iy)e xsn()=0,

k,. Finally, we note that the extrapolation distance relative

to the simulation wall position ik, + X ~2.8%, which com-
pares moderately well with the value~2.33a obtained in
the previous study of this syste@8]. It should be noted that
the director configuration of that work does not allow one to
determine, separately,,, and \, so the quoted value of

(é—iy)on™M+(E+iy)on)=0.

This set of linear homogeneous equations #of~) has a
nontrivial solution if its determinant equals zero. This condi-
really representa + L, . tion leads to the secular equation for the vector (9) and

We have to point out some possible limitations of therelation (7). _ i
method. The first one is computational time. The effect of N the case of strong anchorings~, theq, spectrum is
the surfaces is to dampen the amplitude of long-wavelengtRavidistantq,L =mn, wheren is a positive integer. For fi-
modes: these have the longest relaxation times, according fit€ @nchoring coefficierg, we have a shift in this spectrum.
Eq. (10), and so it is essential to carry out very long runs to | '€ magnitude of the shift depends on the anchoring param-
adequately sample them. We have paid some attention gfer . Indeed, for sufficiently strong anchoring parameters,
estimating the error bars on the measured values of>1, asymptotically
|Q.2(k,)|?, as indicated in Fig 4: the larger values at liyv
follow directly from this effect. We shall return to examine 2mn
the time dependence of fluctuations in a future publication. GL=mn=—=, n=12,..., nle<l,
The second limitation is the actual sensitivity of the mea-
sured averages to the variation in the anchoring strength anghich is equivalent to replacing by (L+2\), X being the
cell thickness. One might expect that in practice it is noteyirapolation length.
possible to measure large values o_f the anchoring parameter For weak anchoringé<1,
é=L,/\, so we need reasonably thin cells. As the cell thick-
nessL, becomes large, the fluctuation spectrum becomes in- 2¢
sensitive toL,,. However, it is important that the walls do gL=mn+—, n=1.2,...
not become too close: thaulk region should be sufficiently mn
large compared to thanterfacial region. Only in this case
can we assume that the scalar order parang@iarthe liquid q,L=&"2 n=o0.
crystal bulk is constant for large scale fluctuation modes.

To summarize, anaIySiS of the director fluctuations inThe Spectrum of the:lx,qy wave vectors depends on the
nematic ||qU|d Crystal slabs allowed us to measure the Sursystem geometry_ Again, if we have periodic boundary con-

face anchoring strength parameter. The method has begfitions in thex andy directions,q, andq, have a discrete
tested for a system of hard ellipsoids of revolution of elon-gpectrum on a fine grid,L,=2=n, (n,=0,1,2 . ..,),oth-

gatione=15 confined between hard walls with homeotropic grwiseq, =(q, ,y) is unrestricted.
anchoring. Careful analysis of fluctuations in slabs of differ- |t js also easy to show that the eigenfunctions that corre-

ent thickness has allowed us to resolve the position of th%pond to different eigenvalueg andgq_, are orthogonal. In-
elastic boundary condition relative to the simulation wall, asyeeq using Eq(7) we can rewrite z

well as to measure the extrapolation length. The elastic
theory gives a good description at low wave numbers, but is _ o (1) g1 -) Zigr
less accurate at higher wave numbers. ®(g..qz)=0n" (0, g e e ont (g, gz)e e
2i )
=T F ELX CoXAD) +Esin(Q,2)]on 7 (q, ,gy).
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