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Liquid crystal director fluctuations and surface anchoring by molecular simulation

Denis Andrienko,1 Guido Germano,1,2 and Michael P. Allen1
1H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

2Fakultät für Physik, Universita¨t Bielefeld, 33615 Bielefeld, Germany
~Received 2 June 2000!

We propose a simple and reliable method to measure the liquid crystal surface anchoring strength by
molecular simulation. The method is based on the measurement of the long-range fluctuation modes of the
director in confined geometry. As an example, molecular simulations of a liquid crystal in slab geometry
between parallel walls with homeotropic anchoring have been carried out using the Monte Carlo technique. By
studying different slab thicknesses, we are able to calculate separately the position of the elastic boundary
condition and the extrapolation length.

PACS number~s!: 61.30.Cz, 61.20.Ja, 07.05.Tp, 68.45.2v
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I. INTRODUCTION

Liquid crystal anchoring effects have been intensiv
studied both experimentally and theoretically during rec
decades@1,2#. Such an interest is easily understood sin
most liquid crystal devices are cells comprising orienti
surfaces with a liquid crystal between. Typically, alignin
surfaces provide a uniform orientation of the liquid crys
director in the cell interior.

On the phenomenological level, liquid crystal anchori
can be described by two basic parameters: the easy axi
rectione and the anchoring coefficientW. These two param-
eters are critical design parameters for every liquid cry
device @3#. A variety of experimentalmethods have bee
proposed to measure anchoring parameters, in particula
anchoring coefficientW @4,5#. Most of them measure surfac
director deviations in an external field and involve rath
complicated optical setups.

In spite of the practical importance, the mechanism of
director alignment is still not well understood. Experimen
techniques always involve optical measurements. They
the entire liquid crystal cell and therefore cannot provide
satisfactory description of the thin interface region. Theor
ical investigations of anchoring are also quite controvers
For example, the usual continuous phenomenological the
has divergent surface terms in the elastic free energy ex
sion @6,7#.

One of the approaches for the systematic investigation
anchoring phenomena is computer simulation of liquid cr
tals in confined geometries. Indeed, computer simulation
well established method to treat bulk elastic coefficie
@8,9#, the surface anchoring strength@10#, and structures of
disclination cores@11,12#. This means that computer simula
tion allows investigation of details of the liquid crystallin
structure that cannot be resolved experimentally.

Several papers have already been published on the se
for reasonable surface potentials to use in simulations@13–
18#. However, most of them do not characterize aligni
surfaces using well established parameters. Questions a
the formation of a solid interface layer and values of the e
axis angle and anchoring coefficient are still open. The r
son for this is probably a lack of reliable methods to meas
these parameters by computer simulation.
PRE 621063-651X/2000/62~5!/6688~6!/$15.00
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In this paper, we propose a technique to measure the
face anchoring strengthW by computer simulation. The
method itself is based on the study of thedirector fluctua-
tions in the liquid crystal cell. A similar approach has alrea
been used for theexperimentalcharacterization of the inter
face @19# and is based on measuring the light scatter
caused by the director fluctuations. In computer simulati
the director fluctuations can be studied directly, using
semble averages of functions of the second-rank order te
components. A fit to the fluctuation amplitudes with equ
tions predicted by elastic theory then allows determination
the surface anchoring strength.

II. THEORY

Large length- and time-scale fluctuations of the direc
n(r ) can be described in the continuum model of liquid cry
tals, based on the phenomenological elastic constants. In
approach, the hydrodynamic equations for the director
the boundary conditions can be obtained by minimization
the cell free energy@20#:

F5Fh1Fb1Fs, ~1!

whereFh5
1
2 g(]n/]t)2 is a hydrodynamic term with an ef

fective viscosity coefficientg, Fb is the Frank elastic free
energy, andFs is the surface anchoring energy.

In what follows we use the one-elastic-constant appro
mation, i.e.,K115K225K335K. Then the Frank free energ
can be brought into the form

Fb5
1

2
KE

V
@~“•n!21~“3n!2#dr .

The liquid crystal cell is bounded by surfacesz50,L
which provide some kind of anchoring condition@1#. Below
we considerhomeotropicanchoring, that is, normal to th
surface.Planar anchoring can be treated in the same wa
We assume that the interaction of the director with the c
surfaces has the Rapini-Papoular form@21#

Fs52
1

2
WE

S0 ,SL

~n•e0,L!2dr' ,
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where the unit vectorse0,L define the directions of the eas
axes atz50,L: e05ez , eL52ez ; W is the anchoring energy
and r'5(x,y).

Equations for the director and boundary conditions can
obtained by minimization of the cell free energy Eq.~1!. In
the case of homeotropic anchoring on both surfaces the
tionary director distribution in the cell is homeotropic, i.e
n05ez . Therefore, we have to investigate small perturb
tions of the director around the distribution:

n~r !5n01dn~r !. ~2!

Minimizing the total free energy~1! and linearizing the equa
tions for the director and boundary conditions with respec
dn, we obtain the equations

g
]

]t
dn5K¹2dn ~3!

and boundary conditions

WdnÁK
]

]z
dnU

z5L,0

50 ~4!

for the fluctuations. Taking into account Eq.~2!, the expres-
sion for the free energy fluctuations can be rewritten in
form of the average of the self-conjugate~Hermitian! opera-
tor 2 1

2 K¹2:

dFb52
1

2
KE

V
dn~r !•¹2dn~r !dr . ~5!

The eigenfunctions of the operator2 1
2 K¹2, which satisfy

boundary conditions~4!, form a complete set of orthogona
functions characterized by wave vectorq. Therefore,dn(r )
can be expanded in a series of these orthogonal function

dn~r !5
1

V (
q' ,qz

eiq'•r'@dn(1)~q' ,qz!e
iqzr z

1dn(2)~q' ,qz!e
2 iqzr z#, ~6!

whereq'5(qx ,qy) and

dn(2)5
ix2j

ix1j
dn(1). ~7!

Here we have introduced the dimensionless wave vectox
5qzL and anchoring parameter

j5
WL

K
5

L

l
, ~8!

wherel is the extrapolation length@20#. The wave vectors
qz form a discrete spectrum because of confinement in thz
direction which depends on the anchoring energyW ~see the
Appendix for details!. The explicit form of theqz spectrum is
given by the secular equation:

~j22x2!sinx12jx cosx50. ~9!

Each individual mode can now be seen from Eq.~3! to relax
exponentially with a relaxation time given by
e

ta-

-

o

e

:

t5g/K~q'
2 1qz

2!. ~10!

Substituting expansion~6! into the free energy~5! and
performing the integration over the cell volume we obtain

dFb5
K

V (
q' ,qz

q2~2j1x21j2!

~ ix1j!2

3dn(1)~q' ,qz!•dn(1)~2q' ,qz!.

Integrating, we took into account the orthogonality of t
eigenfunctions in the expansion~6! with different eigenvec-
torsq, which allowed us to reduce the summations overq,q8
to a single sum overq.

Application of the equipartition theorem of classical st
tistical mechanics, just as for elastic fluctuations in bulk l
uid crystals@22#, gives the fluctuation amplitudes

^dn(1)~q' ,qz!•dn(1)~2q' ,qz!&52
kBTV~ ix1j!2

2Kq2~2j1x21j2!
,

where^•••& denotes an ensemble average.
In molecular simulations, rather than measuring direc

fluctuations, it is more convenient to measure fluctuations
the second-rank order tensor components~following Forster
@22#!. We define the real-space order tensor density

Qab~r !5
V

N (
i

d~r2r i !Qab
i ,

Qab
i 5

3

2 S uiauib2
1

3
dabD ,

wherea,b5x,y,z, in terms of the orientation vectorsui of
each moleculei ~we consider only uniaxial molecules!. If we
assume that there is no variation in thedegreeof ordering,
we may write

Qab~r !5
3

2
Qna~r !nb~r !2

1

2
Qdab

whereQ is the order parameter, i.e., the largest eigenvalue
Qab(r ). If the directorn0 is taken to lie along thez axis
throughout the sample, the off-diagonal componentsQaz(r ),
a5x,y, are proportional to the fluctuations of the corr
sponding director components:

Qaz~r !5
3

2
Qdna~r !.

This is the situation for homeotropic anchoring at both s
faces. For planar anchoring, with the director alongx and the
surface normal alongz, the componentsQxy ,Qxz are impor-
tant ~and nonequivalent!.

Measurements are performed directly in reciprocal spa
The Fourier transform of the real-space order tensor is

Qab~k!5E
V

Qab~r !eik•rdr5
V

N (
i

Qab
i eik•r i.
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Then the fluctuationŝ uQab(k)u2& can be easily measure
from simulations:

uQab~k!u25
V2

N2 F S (
i

Qab
i cos~k•r i ! D 2

1S (
i

Qab
i sin~k•r i ! D 2G . ~11!

We explicitly relate simulation-measured fluctuation mod
with theoretically predicted amplitudes of the director flu
tuations forq'50,

Qaz~kz!5
3

2i
Q(

qz

dna
(1)~0,qz!

3Fei (k1x)21

k1x
1S ix2j

ix1j Dei (k2x)21

k2x G
wherek5kzL. Note that theqz take discrete~but not equally
spaced! values as discussed earlier, while thekz values are
unrestricted.

Sincedn(r ) is real, using Eq.~6! we have

@dn(1)~q' ,qz!#* 52
j21x2

~j1 ix!2
dn(1)~2q' ,qz!.

Taking this equation into account, and the fact that fluct
tions with different wave vectors are independent, i
^dn(1)(q' ,qz)dn(1)(2q' ,qz8)&50 if qzÞqz8 , the corre-
sponding ensemble average of the squared order param
can be rewritten as

^uQaz~kz!u2&5
9

8
kBT

Q2V

K (
qz

x21j2

qz
2~2j1x21j2!

3Uei (k1x)21

k1x
1S ix2j

ix1j Dei (k2x)21

k2x U2

.

~12!

We measureQ and ^uQaz(kz)u2& from simulations, Eq.
~11!, and then compare with the theoretical prediction E
~12!, which is parametrized byL, l, andK. Both the permit-
tedqz spectrum and the variation of^uQaz(kz)u2& with kz are
sensitive to the anchoring strength parameterj5L/l.

The fluctuation amplitudes given by Eq.~12! have fea-
tures that simplify the fitting procedure. First, terms w
small qz values dominate because of theqz

2 in the denomi-
nator. Therefore, it is always possible to truncate this s
and use only the first values of theqz spectrum. Then, for
largekz or for k@x, Eq. ~12! can be simplified so that th
dependence onkz is explicit:

^uQaz~kz!u2&5
9

2
kBT

Q2V

K Fsin~k/2!

k/2 G2

(
qz

x2

qz
2~2j1x21j2!

.

~13!

Hence, for largekz , the fluctuation amplitudêuQaz(kz)u2&
has a characteristic oscillation with the period given byk
5kzL52p. This means that we can adjust the cell thickne
s

-
.,

ter

.

s

L independently of parametersl and K by examining the
characteristic wavelength of the fluctuation amplitu
^uQaz(kz)u2&.

III. MOLECULAR MODEL AND SIMULATION METHODS

To test the technique proposed, we simulated a liq
crystal confined between parallel walls~slab geometry!, with
finite homeotropic anchoring at the walls. The director flu
tuations occur around the preferred,uniform alignment per-
pendicular to the walls.

We performed Monte Carlo~MC! simulation of the liquid
crystal system. We used a molecular model that has b
studied earlier in this geometry@10#. The molecules in this
study were modeled as hard ellipsoids of revolution of elo
gation e5a/b515, wherea is the length of the semimajo
axis andb the length of the two equal semiminor axes. T
phase diagram and properties of this family of models
well studied@23–27#. It is useful to express the density as
fraction of the close-packed densityrcp of perfectly aligned
hard ellipsoids, assuming an affinely transformed fa
centered cubic or hexagonal close-packed lattice. In
case, the isotropic-nematic phase transition occurs at qu
low density,r/rcp'0.2, and the simulations are performe
at a state point corresponding tor/rcp'0.28, for which the
nematic order parameter isQ'0.85. For this model, tem-
perature is not a significant thermodynamic quantity, so i
possible to choosekBT51 throughout.

The slab geometry is defined by two hard parallel confi
ing walls, which cannot be penetrated by thecentersof the
ellipsoidal molecules. Packing considerations generate
meotropic ordering at the surface. Surface anchoring in
system has been studied recently@10# for a system with wall
separationLz5125b58.33a, by applying an orienting per-
turbation at one of the walls and observing the respons
the other. This yielded an estimate of the extrapolat
length l'35b'2.33a. In the current work, simulations
were carried out for systems ofN52000 particles with wall
separationsLz56.58a,8.22a,9.86a, which ~from the above
estimate ofl) would correspond to surface anchoring p
rameters in the range 2.8<j<4.2.

To be sure that we have the same state point for e
simulation, we adjusted the density to have the samePzz
component of the pressure tensor for all systems. The
sequence of runs was carried out using the constant-NVT
ensemble, allowing typically 105 MC sweeps for equilibra-
tion and 107 sweeps for accumulation of averages~one
sweep is one attempted move per particle!.

IV. SIMULATION RESULTS AND DISCUSSION

The simulation results were analyzed to give a dens
profile and an order tensor profile which are shown in Figs
and 2. From these profiles we can see that the walls
sufficiently well separated, and the variation of the ord
parameter across the slab is small, even in spite of the la
change in local density near the walls.

The order tensor fluctuations in reciprocal space were
culated using expression~11!. To fit the simulation results
with the elastic theory we have to remember that the size
the simulation boxLz is not necessarily equal to the liqui
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crystal cell thicknessL appearing in the elastic theory. Th
former is a physical quantity, which, in statistical mechani
is determined by the positions at which the liquid numb
density becomes identically zero. The latter appears in
elastic theory: it is determined by the positions at which
orientational elastic boundary conditions are applied. Ph
cally, the difference may be ascribed to partial penetration
the walls by the liquid crystal molecules, formation of a
ordered~or solid! layer near the walls, or other molecula
scale features. We assume that we may writeL5Lz12Lw ,
where the valueLw ~which may be positive or negative! is
characteristic of the wall, independent ofLz , and may be
determined in our fitting process.

The best estimate of the wall-induced separation dista
Lw was obtained by examining the ratio
^uQaz(kz ,L1)u2&/^uQaz(kz ,L2)u2& for different L1,2 since
they reveal more structure for largekz . Plotting the results in
this way removes the overall scaling of the amplitudes

FIG. 1. Density profiles as functions ofz-coordinate. Distances
are normalized by the molecular semiaxis lengtha and the density
is expressed relative to the closed-packed densityrcp for perfectly
aligned ellipsoids. The profiles are symmetrical; only one side
the slab is shown. The results for different wall separations
almost indistinguishable on this scale.

FIG. 2. Profiles of nematic order parameterQ for different wall
separations. Distances are normalized by the molecular sem
lengtha. The profiles are symmetrical; only one side of the slab
shown. Note the highly expanded vertical scale.
,
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fluctuations, which are sensitive to changes inl, while the
shapes of the curves, and the characteristic oscillation wa
lengths, are sensitive to the choice ofLw . These ratios with
L156.58a,8.22a, L259.86a, and corresponding fitting
curves are plotted in Fig. 3. The best fits were obtained w
Lw /a50.59. In this figure we also plot theoretical curv
with Lw50: the clear discrepancy with the simulation resu
indicates that the simulation box sizeLz is indeed signifi-
cantly different from the actual cell thickness.

Following the determination ofLw , we adjusted the ex-
trapolation lengthl to obtain the best fit to the fluctuatio
data: the fluctuation amplitudes with smallkz are most sen-
sitive to this quantity. Together with the corresponding fi
ting curves for the different slab thicknesses, our results
plotted in Fig. 4. The best fits were obtained with a bu

f
e

xis
s

FIG. 3. Ratio of the director fluctuations as function of wa
vector ~normalized by the molecular semiaxis lengtha) for differ-
ent wall separations. Symbols: Monte Carlo results; solid lin
elastic theory dashed lines: elastic theory without correction for
difference between the elastic-theory cell thicknessL and the simu-
lation box sizeLz .

FIG. 4. Director fluctuations~arbitrary units! as function of
wave vector~normalized by the molecular semi axis lengtha) for
different wall separations. Symbols: Monte Carlo results. Error
timates are indicated at some representative points; at higher w
vectors the errors are smaller than the plotting symbols. Solid lin
elastic theory, fitted to parameters discussed in the text. Inset:
tuations multiplied by (kza)2 to emphasize structure at higher wav
numbers. Successive curves are offset by 0.5 for clarity.
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elastic constantKa/kBT'66 and an extrapolation lengt
l/a'2.3. The theoretical fitting curves agree well with t
simulation results, for small values ofkz , as one would ex-
pect for a theory valid for long-wavelength fluctuations.
higherkz , the structure~emphasized in the inset of Fig. 4 b
a multiplying factorkz

2) is not perfectly reproduced, but th
agreement is satisfactory. This is not surprising, since
expect the elastic theory to become less accurate at hi
kz . Finally, we note that the extrapolation distance relat
to the simulation wall position isLw1l'2.89a, which com-
pares moderately well with the valuel'2.33a obtained in
the previous study of this system@28#. It should be noted tha
the director configuration of that work does not allow one
determine, separately,Lw and l, so the quoted value ofl
really representsl1Lw .

We have to point out some possible limitations of t
method. The first one is computational time. The effect
the surfaces is to dampen the amplitude of long-wavelen
modes; these have the longest relaxation times, accordin
Eq. ~10!, and so it is essential to carry out very long runs
adequately sample them. We have paid some attentio
estimating the error bars on the measured values
uQaz(kz)u2, as indicated in Fig 4: the larger values at lowkz
follow directly from this effect. We shall return to examin
the time dependence of fluctuations in a future publicati
The second limitation is the actual sensitivity of the me
sured averages to the variation in the anchoring strength
cell thickness. One might expect that in practice it is n
possible to measure large values of the anchoring param
j5Lz /l, so we need reasonably thin cells. As the cell thic
nessLz becomes large, the fluctuation spectrum becomes
sensitive toLw . However, it is important that the walls d
not become too close: thebulk region should be sufficiently
large compared to theinterfacial region. Only in this case
can we assume that the scalar order parameterQ in the liquid
crystal bulk is constant for large scale fluctuation modes

To summarize, analysis of the director fluctuations
nematic liquid crystal slabs allowed us to measure the
face anchoring strength parameter. The method has b
tested for a system of hard ellipsoids of revolution of elo
gatione515 confined between hard walls with homeotrop
anchoring. Careful analysis of fluctuations in slabs of diff
ent thickness has allowed us to resolve the position of
elastic boundary condition relative to the simulation wall,
well as to measure the extrapolation length. The ela
theory gives a good description at low wave numbers, bu
less accurate at higher wave numbers.
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APPENDIX: FLUCTUATION SPECTRUM

To obtain the spectrum of theqz modes of the fluctuations
we need to select from the eigenfunctions of the opera
2 1

2 K¹2 those that satisfy the boundary conditions~4!. Sub-
stituting Eq.~6! into the boundary conditions~4!, we obtain
a set of linear equations

~j1 ix!eixdn(1)1~j2 ix!e2 ixdn(2)50,

~j2 ix!dn(1)1~j1 ix!dn(2)50.

This set of linear homogeneous equations fordn(6) has a
nontrivial solution if its determinant equals zero. This con
tion leads to the secular equation for theqz vector ~9! and
relation ~7!.

In the case of strong anchoring,j→`, theqz spectrum is
equidistant:qzL5pn, wheren is a positive integer. For fi-
nite anchoring coefficientj, we have a shift in this spectrum
The magnitude of the shift depends on the anchoring par
eter j. Indeed, for sufficiently strong anchoring paramete
j@1, asymptotically

qzL5pn2
2pn

j
, n51,2, . . . , n/j!1,

which is equivalent to replacingL by (L12l), l being the
extrapolation length.

For weak anchoring,j!1,

qzL5pn1
2j

pn
, n51,2, . . . ,

qzL5j1/2, n50.

The spectrum of theqx ,qy wave vectors depends on th
system geometry. Again, if we have periodic boundary c
ditions in thex and y directions,qx and qy have a discrete
spectrum on a fine gridqaLa52pna (na50,1,2, . . . ,),oth-
erwiseq'5(qx ,qy) is unrestricted.

It is also easy to show that the eigenfunctions that co
spond to different eigenvaluesqz andqz8 are orthogonal. In-
deed, using Eq.~7! we can rewrite

F~q' ,qz!5dn(1)~q' ,qz!e
iqzr z1dn(2)~q' ,qz!e

2 iqzr z

5
2i

ix1j
@x cos~qzz!1j sin~qzz!#dn(1)~q' ,qz!.

It is easy to check using the secular equation~9! that func-
tions f(qz)5x cos(qzz)1j sin(qzz) are orthogonal, i.e.,

E
0

L

f~qz!f~qz8!dz5
1

2
L~2j1x21j2!dqz ,q

z8
, ~A1!

where dqz ,q
z8

is the Kronecker delta. Therefore, the eige

functionsF(q' ,qz) are orthogonal and can be normalize
using Eq.~A1!.
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